Product of Measurable Spaces and Applications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing Pairs of Measurable Functions and Partial Inner Product Spaces

We continue the analysis of reproducing pairs of weakly measurable functions, which generalize continuous frames. More precisely, we examine the case where the defining measurable functions take their values in a partial inner product space (PIP spaces). Several examples, both discrete and continuous, are presented.

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Spaces of Measurable Transformations

By a space we shall mean a measurable space, i.e. an abstract set together with a <r-ring of subsets, called measurable sets, whose union is the whole space. The structure of a space will be the <r-ring of its measurable subsets. A measurable transformation from one space to another is a mapping such that the inverse image of every measurable set is measurable. Let X and F be spaces, F a set of...

متن کامل

A Universal Integral Independent of Measurable Spaces and Function Spaces

For [0,∞]-valued (monotone) measures and functions, universal integrals are introduced and investigated. For a fixed pseudomultiplication ⊗ on [0,∞] the smallest and the greatest universal integrals are given. Finally, a third construction method for obtaining universal integrals is introduced.

متن کامل

Some Applications of Strong Product

Let G and H be graphs. The strong product GH of graphs G and H is the graph with vertex set V(G)V(H) and u=(u1, v1) is adjacent with v= (u2, v2) whenever (v1 = v2 and u1 is adjacent with u2) or (u1 = u2 and v1 is adjacent with v2) or (u1 is adjacent with u2 and v1 is adjacent with v2). In this paper, we first collect the earlier results about strong product and then we present applications of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tatra Mountains Mathematical Publications

سال: 2019

ISSN: 1210-3195

DOI: 10.2478/tmmp-2019-0018